Stabilization of the actomyosin complex by negative charges on myosin.

نویسندگان

  • M Furch
  • B Remmel
  • M A Geeves
  • D J Manstein
چکیده

Sequence comparisons of members of the myosin superfamily show a high degree of charge conservation in a surface exposed helix (Dictyostelium discoideum myosin II heavy chain residues S510 to K546). Most myosins display a triplet of acidic residues at the equivalent positions to D. discoideummyosin II residues D530, E531, and Q532. The high degree of charge conservation suggests strong evolutionary constrain and that this region is important for myosin function. Mutations at position E531 were shown to strongly affect actin binding [Giese, K. C., and Spudich, J. A. (1997) Biochemistry 36, 8465-8473]. Here, we used steady-state and transient kinetics to characterize the enzymatic competence of mutant constructs E531Q and Q532E, and their properties were compared with those of a loop 2 mutant with a 20 amino acid insertion containing 12 positive charges (20/+12) [Furch et al. (1998) Biochemistry 37, 6317-6326], double mutant Q532E(20/+12), and the native motor domain constructs. Our results confirm that charge changes at residues 531 and 532 primarily affect actin binding with little change being communicated to the nucleotide pocket. Mutation D531Q reduces actin affinity (K(A)) 10-fold, while Q532E leads to a 5-fold increase. The observed changes in K(A)() stem almost exclusively from variations in the dissociation rate constant (k(-A)), with the introduction of a single negative charge at position 532 having the same effect on k(-A) as the introduction of 12 positive charges in the loop 2 region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced stimulation of myosin subfragment 1 ATPase activity by addition of negatively charged residues to the yeast actin NH2 terminus.

We examined the effects of yeast actin NH2-terminal mutations on actomyosin interactions and the function of actin in vivo through measurements of actin-activated ATPase activity, cosedimentation with rabbit muscle myosin subfragment 1 (S-1), in vitro motility, and invertase secretion assays. As reported earlier (Cook, R. K., Blake, W., and Rubenstein, P. A. (1992) J. Biol. Chem. 267, 9430-9436...

متن کامل

The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila.

Apical constriction is a major mechanism underlying tissue internalization during development. This cell constriction typically requires actomyosin contractility. Thus, understanding apical constriction requires characterization of the mechanics and regulation of actomyosin assemblies. We have analyzed the relationship between myosin and the polarity regulators Par-6, aPKC and Bazooka (Par-3) (...

متن کامل

The Timing of Midzone Stabilization during Cytokinesis Depends on Myosin II Activity and an Interaction between INCENP and Actin

The final steps of cell division are tightly coordinated in space and time, but whether mechanisms exist to couple the actin and microtubule (MT) cytoskeletons during anaphase and cytokinesis (C phase) is largely unknown. During anaphase, MTs are incorporated into an anti-parallel array termed the spindle midzone (midzone MTs), whereas F-actin and non-muscle myosin II, together with other facto...

متن کامل

A Tripartite Complex Containing MRCK Modulates Lamellar Actomyosin Retrograde Flow

Actomyosin retrograde flow underlies the contraction essential for cell motility. Retrograde flow in both lamellipodia and lamella is required for membrane protrusion and for force generation by coupling to cell adhesion. We report that the Rac/Cdc42-binding kinase MRCK and myosin II-related MYO18A linked by the adaptor protein LRAP35a form a functional tripartite complex, which is responsible ...

متن کامل

Perturbations of functional interactions with myosin induce long-range allosteric and cooperative structural changes in actin.

The role of the rotational dynamics of actin filaments in their interaction with myosin was studied by comparing the effect of myosin subfragment 1 (S1) with two other structural perturbations, which have substantial inhibitory effects on activation of myosin ATPase and in vitro motility of F-actin: (1) binding of the antibody fragment Fab(1-7) against the first seven N-terminal residues and (2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 39 38  شماره 

صفحات  -

تاریخ انتشار 2000